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Abstract. Since the partial observation issue is one of the crucial ob-
stacles in multi-agent systems (MAS), a so-called "Centralized Training
Decentralized Execution (CTDE)" paradigm has been widely studied
by virtue of its integration of the global observations in the course of
training process. Traditional CTDE paradigm suffers from observed lo-
cally during the execution phase, so numerous efforts have been made to
study the communication efficiency among agents to promote the cog-
nitive consistency and better cooperation. However, the vast majority
of approaches still take effect in a centralized manner, which facilitates
the agents to communicate with each other in a broadcast way. As a
consequence, this centralized broadcast-based training process is infeasi-
ble when we adopt it to a more complex scenario. To address this issue,
we propose a neighborhood-based learning communication approach in
this paper to enable the agents to perform the training and execution
in decentralized fashion based on the messages of its neighbor nodes. In
particular, we design a novel encoder network whereby a two-step deci-
sion model is proposed to improve the performance of this decentralized
training. To evaluate the method, we further implement a prototype and
carry out a number of simulation-based experiments to demonstrate the
effectiveness of our proposed method in multi-agent cooperation, when
compared with the selected existing multi-agent methods to achieve the
best rewards and drastically reduce the training data transmission.

Keywords: Multi-Agent System, Deep Reinforcement Learning, Learn-
ing Communication

1 Introduction

Multi-agent reinforcement learning (MARL) has emerged as a cutting-edge ar-
tificial intelligence technology, which has achieved significant success in mas-
sive challenging tasks [10, 17, 13]. However, although MARL shows excellent
prospects in solving optimization problems, it encounters many additional ob-
stacles when adapted to real-world tasks [20, 19, 8]. One is the well-known non-
stationary problem. The simultaneous action of multiple agents brings not only
the dimensional explosion of the observation space, but also the difficulty of



reaching consistency between actions and environment. Another is the matter
of partial observation. A single agent has a limited perspective and can only
observe the situation in its own neighborhood, which leads to a lack of over-
all consideration in its decision-making. To overcome these technical hurdles, a
straightforward approach that came into researchers’ minds is to aggregate all
observations for centralized model training. Meanwhile, in the execution phase,
the trained model relies on local observations to make decisions independently.
Through optimization algorithms, such as value decomposition and credit as-
signment, this paradigm, called centralized training and decentralized execution
(CTDE) [17, 13, 15], alleviates parts of the difficulty in the convergence of model
training. However, it still suffers from chaotic decisions caused by partial obser-
vation in the execution stage.

Another intuitive idea comes from bionics, where animals use communication
to negotiate and cooperate. Introducing communication into multi-agents means
that agents can share their perception of the environment and their intentions
to act, thus achieving unanimity. Agents usually encode their own observations
and send them to other agents to assist decision-making. The open problems
in learning communication include how to encode and decode the message, se-
lect communication objects, and design communication mechanisms [7, 14, 21,
19, 2]. Tremendous researchers work towards these aspects and have made mar-
velous achievements, showing the advantages of communication in MARL, such
as CommNet [16], IC3Net [14], TarMAC [1], I2C [2], and so on. Although promis-
ing, these methods somehow imply centralization requirements, for instance,
communicating in a broadcast manner [16, 6, 1], concentrating all observations
to train the encoder or communication networks [7, 2].

To address these issues, we get inspiration from social psychology, which finds
that cognitive consistency within a neighborhood matters, and people tend to
cooperate with neighbors [11]. To this end, we design a brand-new neighbor-
oriented learning communication approach, in which agents make decisions and
train models by utilizing the neighboring messages. We made the following con-
tributions in this paper: (1) We design an encoder network according to the
idea of neighborhood cognitive consistency. By calculating the KL divergence of
different neighbor messages, the encoder network can represent the consensus in-
formation of the neighborhood. (2) We propose a pseudo-pre-acting mechanism.
This mechanism can send decision information along with messages to assist
neighbors’ decision-making and reduce the non-stationary of MAS. (3) We de-
velop a brand-new learning communication method based on the AC algorithm,
Neighborhood-Oriented Actor-Critic (NOAC), and construct abundance experi-
ments to validate our findings.

The organization of the paper is as follows: we discuss related works regarding
MARL in Section 2 and introduce some background knowledge in Section 3. We
illustrate the formulation and methodology in Section 4. Afterward, we present
the simulation studies to validate our findings in Section 5, followed by the
conclusion of the paper in the last section.



2 Related Work

A critical problem of a MARL is how to characterize the interaction between
agents, so numerous works propose that we can learn a joint value to guide
agents’ actions [10, 17, 13, 15, 5]. Based on this idea, researchers developed a
widely used paradigm, centralized training decentralized execution (CTDE). In
this paradigm, all agents share the information of joint value to mitigate non-
stationary. Although This paradigm ha won a series of medals, the lack of extra
information in the execution phase still plagues the robustness of the action pol-
icy. To address the agents’ limited perspective issue, exchanging observations
among agents to gain an understanding of the entire environment could be an
intuitive and favorable idea. Plenty of works have demonstrated that learning
communication is a promising MARL approach [3, 16, 14, 1, 6, 7, 2]. These meth-
ods mainly focus on how to combine communication into deep reinforcement
learning networks.

As a pioneer of learning communication, DIAL [3] takes DQN to implement
a learnable communication, thus introducing backpropagation into communica-
tion networks first time. DIAL’s shortcoming is that it only handles discrete mes-
sages. Therefore, CommNet [16] employs a hidden layer to encode observations
as continuous messages. In these methods, messages are shared through a fully
connected network among agents, that is, communicating in a broadcast man-
ner. This coarse message delivery mode brings redundant communication and
massive interference information. For a refined measure of the message, Lowe
et al. [9] analyzed the urgency of messages and proposed two indicators, posi-
tive signaling and positive listening, to measure the utility of messages. Based
on the concern that messages are not always beneficial to decision-making, some
works tried to investigate how to communicate efficiently. Sort of methods repre-
sented by ATOC [6] and IC3Net [14] introduced a gate mechanism to determine
whether a message needs to be transmitted. In contrast, other alternative ap-
proaches, e.g., SchedNet [7], TarMAC [1], and I2C [2], adopted some weighting
mechanisms to reduce the communication between some agents.

All the aforementioned methods show high efficiency and advancement. Still,
inevitably there is a common problem: global information (including all observa-
tions and actions) is needed to calculate TD-error during training. This feature
puts them at a disadvantage when dealing with large-scale multi-agent systems.
The dilemma seems to stem from the fact that non-stationary requires global
information to counteract it. To this end, we designed a learning communication
method that trains and executes depending on neighborhood information. One
of the essential differences between previous works and ours is that we no longer
take global information into account to calculate TD-error. This setting is more
practical and can flexibly parallelize training.



3 Background

3.1 Dec-POMDP

Decentralized partially observable Markov decision process (Dec-POMDP), is
commonly used to characterize multi-agent systems, which assume that each
agent possesses only partial observations of the environment and follows a hidden
Markov decision process for state transitions. A Dec-POMDP can be defined as
a tuple:

D = ⟨N ,A,R,O⟩ (1)

here, N denotes the number of agents in total, A = a1 × ... × aN is the set of
joint action, R = {r1, ..., rN } is the reward set, O = {o1, ..., oN } is the set of
observations, which satisfies oi ∪ oj ⊈ oi or oj .

Our goal is to guide the agent to achieve the maximum cumulative reward
E[
∑+∞

t=0 γr⃗t], here γ is the discount factor. To this end, we define a set of policies
π⃗ = {π1(a1|o1), ..., πN (aN |oN )}, and the final objective is to learn the optimal
policy to maximize the cumulative reward.

J (θ) = Ea∼π(θ)[

+∞∑
t=0

γr⃗t] (2)

Remarkably, considering that we mainly focus on the cooperative agents, there
is commonly only one global reward r, which is one of the crucial reasons why
MARL is hard to converge.

3.2 Actor-Critic

Actor-Critic is a typical reinforcement learning algorithm, characteristic of com-
bining the advantages of value-based and policy gradient methods. It includes
two networks: actor and critic. Critic network is used to estimate the current
status value V (o; θc), which is updated by calculating the current TD-error:

L(θc) = γ ∗ V (o′; θc) + r − V (o; θc) (3)
Meanwhile, the actor network adopts the policy gradient method to perform

actions for agents. The idea of policy gradient is to give the bigger action-value
higher sampling probability. Therefore, combined with the advantage function
of the critic network, its update method is as follows:

∇θaJ (θa) = ∇θa [ logθa πθa(a|o)L(θc)] (4)
It is worth noting that, to avoid non-stationary problems in multi-agents

when training, we usually default that the critic network is centralized, or each
critic can obtain global information through communications or other means.
That is, o and a in the above formula are the set of observations and actions of all
agents, respectively. This kind of method, though, has shown good convergence
guarantee, the cost of aggregating all the information is unbearable in large-scale
multi-agent systems.



4 Methodology

To break through the centralized dilemma of multi-agent training, we get some
inspiration from the literature [11]. In most cases, agents only interact with their
neighbors, which is also in line with the run-on form of human society. To this
end, we design a neighborhood-oriented method for multi-agent training in the
subsequence section.

4.1 Neighborhood Cognitive

We denote the set of neighbors of agent i as N(i), i.e., agent j ∈ N(i) is the
neighbor of agent i. According to the assumption of [11], there is a so-called
true hidden cognitive variable C in each neighborhood, and all partial ob-
servations are the interplay of these variables. This assumption is intuitive, we

Fig. 1. The partial observations are generated from the interplay of hidden cognitive
variables.

can imagine that multiple neighbors observe a global state S and attain multiple
hidden variable Ck, and agent i observes Ck and get observation oi, as illustrated
in Fig. 1 We can assume that {Ck} has a strong representation of global state
S, and the observation of agent i can be derived as follows:

p(oi|S) =
∑
k

p(oi|Ck) (5)

Therefore, we can regard the aggregation of Ck as an intermediate representa-
tion of S. Although this hidden state does not change the situation that the
global reward cannot be decomposed to a single agent (or neighborhood), it did
mitigate part of the uncertainties by such conversion. As a consequence, we de-
sign an encoder network, mi = M(oi), to encode the observation of agent i and
send it to the neighbors. We can rewrite the AC algorithm with neighborhood
communication as follows:

L(θci ) = γ ∗ Vj∈N(i)(m
′
i,m

′
j ; θ

c
i ) + r − Vj∈N(i)(mi,mj ; θ

c
i )

∇θa
i
J = ∇θa

i
[ logθa

i
πθa

i ;j∈N(i)(ai|mi,mj)L(θci )]
(6)

Note that the input to the AC algorithm becomes an encoded group of messages.
Neighborhood consistency assumes that all observations are based on the same
hidden variable Ck, which means that oi and oj are inherently correlated, so we
can achieve consistency in cognition by minimizing message differences. Although
the exact value of Ck is unknown, we can leverage KL-divergence to measure
the differential of messages. Therefore, we derive the loss function of the encoder



network as follows:
Le(θmi ) =

∑
j∈N(i)

DKL(P (mi; θ
m
i )∥P (mj)) (7)

By the designed encoder network, the benefits of encoding are not only improved
neighborhood cognize consistency but also a significant reduction in the amount
of data transferred.

4.2 Pseudo Pre-Acting

Passing messages brings additional information to the actor network, and affects
its decision-making by integrating neighborhood information. The neighborhood
message changes the receiver’s decision, and we use this differential to indicate
how positive the agent is to listen to the message. By using the causal inference
method, we can define indicators to show how decision-making affecting by its
neighbors.

Ii = DKL,j∈N(i)∪i(π(a|oi,mj)∥π(a|oi)) (8)

Unfortunately, this kind of influence demonstrates the impact of neighbor-
hood information on decision-making and does not indicate whether the changes
increase or decrease the reward. Hence, we look at the role of messages from the
perspective of game theory.

As we know, multi-agent systems can usually be formalized as a game, in
which each agent takes their own action and gets a payoff. An important concept
in game theory is the Nash equilibrium (NE), which means that the system
is in a sort of steady state. Although NE is not always meant to maximize
social welfare (reward), it is robust enough and usually better than the non-
stationary. Moreover, the maximize reward must also be some element of the
NE set. Therefore, if we let multi-agents reach Nash equilibrium cooperatively,
we can change the problem of maximizing rewards to finding the optimal point
among multiple NE states.

There are many ways to solve Nash equilibrium, and the most effective one
is to calculate the best response. We let Ai and u be the action space and the
utility function of agent i, respectively, then the best response can be calculated
as follows:

a∗ = argmaxai∈Ai
u(ai, a⃗−i) (9)

here, a⃗−i represents the action set of other agents except i. One of the definitions
of Nash equilibrium is that all agents are in the best response state, which means
that no agent can unilaterally change its action for greater rewards. That is, when
agents know the actions of other agents, they can adopt strategies to get better
rewards. We can share agents’ actions through communication and compute
actions through πi(ai|oi, aj ; j ∈ N(i)).

However, it is not practical to send all neighborhood actions to agent i for
decision-making, because agents act simultaneously rather than sequentially.
When one agent receives the other agents and changes its action, this change
will lead to the action of the other agents should also correspond to the change.



To avoid this recurring chain reaction, we propose a two-step decision-making
method:

1) obtain âi by π̂i(âi|oi), and send it to neighbors;
2) execute action πi(ai|oi, aj ; j ∈ N(i)) after the actions of neighbors are

received.
We refer to this approach as pseudo-pre-acting (PPA) mechanism, in

which â and π̂ are called pseudo-action and pseudo-policy, respectively. Note
that πi is the policy we actually learned by interacting with the environment, so
we update the pseudo-policy network π̂i by the aforementioned causal inference
indicator:

Lπ̂(θmi ) = DKL,j∈N(i)(π̂i(âi|oi; θmi )∥πi(ai|oi, aj ,mj)) (10)
There are two perspectives to explain why we make the pseudo-action approx to
the actual action: On the one hand, the consistency of the pseudo action and the
actual action make the best response calculated by other agents effective; on the
other hand, on the premise of receiving other acts, the approximate of the two
types of actions indicates that the current state is in some kind of equilibrium.

4.3 Neighborhood-Oriented Actor-Critic

Combined with the above methods, we propose a neighborhood-oriented MARL
approach based on actor-critic: Neighborhood-Oriented Actor-Critic (NOAC).
The overall architecture of NOAC is illustrated in Fig. 2, which consists of three
parts: encoder network, actor network, and critic network.

Fig. 2. The overall architecture of NOAC. The blue lines are the execution dataflow,
while the red lines are training dataflow. Gray cricles are neural networks.

In the execution phase, the encoder network encodes the local observation,
outputs the message mi and pseudo action âi, and afterward sends it to other
neighbors. After receiving messages and pseudo-actions from other neighbor
nodes, the actor network conducts these messages into forward computing. It
will select appropriate actions to interact with the environment and step into
the next epoch.

In the training stage, the encoder network calculates Le and Lπ̂ according to
the received messages and the actions performed by the actor network, respec-



tively, and updates parameters with the following loss function.
L(θmi ) = Le(θmi ) + Lπ̂(θmi ) (11)

Concerning the actor network, we adopt the policy gradient to update parame-
ters as follows:

∇θa
i
J = ∇θa

i
[ logθa

i
πθa

i ;j∈N(i)(ai|oi,mi, aj ,mj)L(θci )] (12)
As for the training of the critic network, the main concern is on how to calculate
TD-loss. As mentioned above, the critic network is usually centralized since it
needs to estimate Qtotal, which is directly relevant to gloabl reward. Since the
global reward cannot be directly assigned to individuals in multi-agent coopera-
tion, the centralized network is needed to evaluate the value function. Likewise,
although we propose that Ck can characterize part of the global state, we still
cannot assign the global reward to a concrete Ck. However, considering that
in some environments where agents move around, each agent transforms the C
value as it moves, we have relaxed this constraint somewhat. As the size of the
neighborhood directly affects the approximation of QC and Qtotal, we define
the TD-loss of the critic network as follows:

L(θci ) = γ ∗ Vj∈N(i)∪i(m
′
i,m

′
j ; θ

c
i ) +

|N(i)|
N ∗ r − Vj∈N(i)∪i(mi,mj ; θ

c
i ) (13)

Thanks to the decentralized network design, all agents run in parallel during
the execution and training process, which only needs to be synchronized during
communication and environment step. Therefore, the networks of agents can be
deployed in different servers and communicate through protocols, e.g., GLOO,
NCCL, TCP, etc. This characteristic is particularly efficient in large-scale multi-
agent environments.

5 Experiments

To validate our findings, we conducted empirical studies to evaluate the per-
formance of the proposed NOAC. We implemented a test platform based on
multi-agent particle environment [12] and took a cooperative game as the envi-
ronment simulator.

5.1 Setup

Environment. We took the cooperative navigation game [10] as the simula-
tion environment. As shown in Fig. 3, there are N agents and N landmarks in
the environment, and the agents need to cooperate with each other to occupy
all the landmarks. The environment takes the sum of the minimum distance be-
tween all agents and landmarks as the global reward value, that is, there is no
individual reward for each agent.

Each agent has its own observation oi and takes the closer agents as its
neighbors. And each agent can only stand on one landmark, and there will be a
penalty (negative reward) for collisions. In the experiment, we set N = 7, N(i) =
3 and max-cycles = 40. All other settings are default values in the PettingZoo
open-source library [18]. It is worth noting that the agent’s environment is open



rather than bounded in a particular range, which may differ from some other
cooperative navigation settings.

Fig. 3. Illustration of cooperative navigation environment.
Baselines. We compared the proposed method NOAC to other state-of-

the-art MARL baselines :
- TarMAC [1]: An attention-based learning communication method, it weighs

the importance of incoming messages.
- IC3Net [14]:A gate-based method to decide whether to communicate with

others, in which messages are transmitted in broadcast mode.
- MADDPG [10]:A classical CTDE algorithm without communication.
- DDQN [4]:A typical single-agent algorithm. In our setting, it can sense the

global state and simultaneously outputs all agents’ actions.
Hyperparameters. To decline the off-site factors in the comparison, we

adopted the same network structure in most baselines. In addition, we set the
learning rate lr = 1 × 10−3, batch_size = 64 for all methods. We implemented
the testbed based on PyTorch and PettingZoo and ran it on a 3 × Tesla V-100
server.

5.2 Numerical Results

Global Reward. Firstly, we investigated the rewards of several baselines,
which is the primary concern for MARL problems. Previous cooperative navi-
gation experiments often only focused on the average reward, while we are more
concerned with the state the agent is finally in when the round ends, the final re-
ward. Therefore, we compared the two types of rewards of baselines: final reward
and total reward.

The comparison of the final rewards is illustrated in Fig. 4(a), in which the
final rewards of NOAC are approx to TarMAC, more significant than several
other baselines. This result indicates the effectiveness of our approach. It is
worth noting that these methods, including TarMAC, require a central exchange
of information, while NOAC only collects neighborhood information. Similarly,
NOAC also performs superbly on total rewards, as shown in Fig. 4(b). It is noted
to point out that the gap of baselines on total reward is less different than that
on the final reward, so we treat the final reward as the metric for the following
experiments.

We executed 500 episodes with these trained models, and Tab. 1 reports the
mean and standard deviations of the total and final rewards. NOAC outperforms



0 200 400 600

steps (×104)

−10

−9

−8

−7

−6

−5

−4

−3

fin
al

re
w

ar
d

algorithms
NOAC
MADDPG
TarMAC
DQN
IC3Net

(a)

0 200 400 600

steps (×104)

−8

−6

−4

−2

re
w

ar
d

algorithms
NOAC
MADDPG
TarMAC
DQN
IC3Net

(b)
Fig. 4. Comparison of final reward (a) and total reward (b).

all the baselines with the highest average of final rewards. And these results sug-
gest that our partial information and messaging training approach is comparable
to these methods concentrating all the information.

Table 1. Summary of final reward and total reward of MARL baselines
Algorithms NOAC MADDPG TarMAC IC3Net DQN

Final Reward Mean -3.292036 -5.627667 -3.335745 -4.164599 -5.120261
Final Reward Std 0.595101 0.646373 0.766422 0.457646 0.626979

Total Reward Mean -3.358014 -4.168850 -3.201513 -3.512844 -4.132432
Total Reward Std 1.430986 1.219422 1.408928 0.964834 0.860662

Neighborhood Impact. Although NOAC is designed for neighborhoods,
it can also handle broadcast messages. To investigate whether NOAC does in-
deed adopt neighbors’ messages, we contrast it with two exceptional cases: one
where no communication occurs at all, which is a decentralized AC algorithm
with independent control, denoted as "NOAC-No-Comm"; the other is a fully
connected communication network with NOAC, which we call "NOAC-FC."

After training with the same settings, the comparison of the experimental
results is illustrated in Fig. 5(a). Not surprisingly, the decentralized algorithm
NOAC-No-Comm without communication performs the worst, even worse than
with all other communication or CTDE baselines, because this method only
trains with local observations of the agent itself. This finding confirms that
communication makes considerable progress to MARL.

Nevertheless, it is worth noting that NOAC-FC with fully connected com-
munication does not bring a significant improvement in performance. At the
beginning of training, the convergence of NOAC-FC is even slower than that
of partial connection. This result illustrates, in a way, that more messages are
not always better, and actually is consistent with a proposition of selective com-
munication of related works. It also demonstrates that neighborhood cognitive
consistency does exist, and the agent can achieve an approximate effect of the
global observation through the messages of the neighbors.

Ablation. Finally, to further investigate the contribution of the proposed
encoder network and pseudo-pre-acting to the NOAC, we performed ablation
experiments. We conducted three different sets of experiments: 1) the NOAC
without pseudo-pre-acting mechanism, "NOAC-No-Pseudo"; 2) The method of
not encoding the neighbor observation, "NOAC-No-Encoder", it should be noted
that the raw observation of the neighbor will still be transmitted; 3) The "NOAC-



0 200 400 600

steps (×104)

−9

−8

−7

−6

−5

−4

−3

fin
al

re
w

ar
d

algorithms
NOAC
NOAC-FC
NOAC-No-Comm

(a)

0 100 200 300 400 500 600

steps (×104)

−9

−8

−7

−6

−5

−4

−3

fin
al

re
w

ar
d

algorithms
NOAC
NOAC-No-Pseudo
NOAC-No-Encoder
NOAC-No-Encoder-Pseudo

(b)
Fig. 5. Reward comparison of different neighborhood impacts (a) and total reward (b).

No-Encoder-Pseudo" algorithm without an encoder or pseudo-pre-acting mecha-
nism, in which each agent aggregates the neighborhood observations for training.

Fig. 5(b) shows a comparison of the ablation experiments, and it can be seen
that the removal of either mechanism leads to a slight decrease in performance. In
particular, the NOAC-No-Encoder-Pseudo with the encoder and PPA removed
shows a significant drop in reward. To indicate the gap more clearly, Tab. 2
reports the difference in rewards for each setting. It should be noted that either
method makes use of information from neighbors.

Table 2. Summary of the final reward of ablation experiments
NOAC No-Encoder No-PPA No-Encoder-PPA

Final Reward Mean -3.292036 -3.458257 -3.514603 -3.828242
Final Reward Std 0.595101 0.411429 0.955895 0.592898

Despite the absence of an encoder, actor and critic networks can still extract
critical information from raw observations. Thus, the gap is not such significant.
However, the encoded message is around 3/4 dimensional less than the original
observation (42 → 12), which shows a considerable advantage in terms of latency
in both network transmission and tensor operations.

6 Conclusions

In this paper, we proposed a neighborhood-oriented MARL training method,
which leverages solely neighbors’ messages rather than global information to
learn policies. Experiments demonstrate that this decentralized training method
is comparable to the mainstream CTDE methods. Although this is a crude at-
tempt, it shows the potential of decentralized learning methods in solving MARL
problems. Decentralized MARL learning is not only closer to real-world scenarios
but also has excellent benefits in terms of computational efficiency. We anticipate
this paradigm could be developed and applied to more practical problems.
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